Product Description

Product Description

Large 300 ton small 5 ton long stroke single double acting telescopic hydraulic cylinder for sale
 

Customer ID   Order Number  
Model   Application  
Data Sample Drawing As per factory standard Fluid Medium Hydraulic Oil Others
         
Cylinder Type Piston Plunger Single Acting Double Acting Double Rod Temperature Below -20ºC Normal 80ºC to 120ºC
               
Oil Port Location Direction Size Force Push Pull
         
Usage Frequency Working Continuously for     Hours Seal Requirement  
  Materials As per factory standard Special Requirements
Pressure Holding
Requirements
No Need Yes, holding time for    
    Speed mm/s
Installation Horizontal Vertical Angled or Arc Air Bleed No need Head End
           
Working Type Working separately Multiple cylinders working synchronously Color Customized Per sample Per factory standard
     
Cushion No Need Head end Cap end Head&cap Non-adjustable Adjustable
Accesories Bearing Fitting Dust cover Lock nut Hose Lock nut Fixing bolt Others
               

 

About US

Located in HangZhou City, ZheJiang province, center of North China Hydraulic industry, Lidingsheng (LDS) Lifting Machinery (ZheJiang ) Co., Ltd is specialized in hydraulic machinery, appliances and components, establishing an excellent reputation with superior quality and high-performance products since 2012. Covering an area of 16000 square meters, LDS provide Hydraulic Systems and parts including hydraulic power unit packs, mini hydraulic power unit pack, hydraulic cylinders, motors, gauges, filters, hydraulic valves and so on with modern standard workshop and advanced equipment.
 
With more than 80 series, 1,500 specifications products and 3 tech teams, LDS is capable of R&D and producing hydraulic system components, which are widely used in machinery industry, metallurgy industry, agricultural equipment, construction equipment, mining equipment, food industry, forestry equipment, trailers, excavators and other fields. Furthermore, LDS is capable of customizing hydraulic systems according to clients' requirements on mounting styles, pressure ratings, sizes and configurations.

Please contact our sales manager and provide your custom requirements.
We will provide catalog with more products.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: RoHS, CE, ISO9001, SGS
Pressure: 3-100MPa
Work Temperature: -10ºC to 200ºC Above
Acting Way: Optional
Working Method: Optional
Adjusted Form: Optional
Customization:
Available

|

lift cylinder

How does a lift cylinder handle variations in fluid pressure and flow rate?

A lift cylinder is designed to handle variations in fluid pressure and flow rate in order to ensure smooth and controlled operation. Here's an explanation of how lift cylinders handle these variations:

1. Fluid Pressure:

Lift cylinders are typically part of a hydraulic system that utilizes pressurized fluid to generate the necessary force for lifting. The lift cylinder is designed to withstand varying fluid pressure levels. When the fluid pressure is increased, the lift cylinder can handle the additional force exerted on its piston. Conversely, when the fluid pressure decreases, the lift cylinder adjusts accordingly and maintains its functionality.

2. Flow Rate:

The flow rate of hydraulic fluid determines the speed at which the lift cylinder extends or retracts. Lift cylinders are designed to accommodate variations in flow rate. By controlling the flow rate of the hydraulic fluid through the use of control valves or flow control devices, operators can adjust the speed of the lift cylinder's movement. This allows for precise and controlled lifting operations.

3. Control Valves:

Control valves are an integral part of the hydraulic system that regulates the fluid pressure and flow rate. Lift cylinders are often equipped with control valves that enable operators to control the movement of the cylinder by adjusting the pressure and flow of the hydraulic fluid. These valves can be manually operated or automated, providing flexibility in handling variations in fluid pressure and flow rate.

4. Cylinder Design:

Lift cylinders are designed to be robust and durable, capable of withstanding variations in fluid pressure and flow rate. The cylinder's construction and materials are selected to ensure optimal performance under different operating conditions. Seals and other components within the lift cylinder are designed to maintain their functionality and prevent leakage, even when subjected to changes in fluid pressure and flow rate.

5. Fluid Control Systems:

In more advanced lift cylinder systems, fluid control systems may be employed to handle variations in fluid pressure and flow rate. These systems can include pressure relief valves, flow control valves, or proportional valves. Pressure relief valves protect the lift cylinder and the hydraulic system from excessive pressure, while flow control valves regulate the flow rate of the hydraulic fluid. Proportional valves provide precise control over both pressure and flow, allowing for fine-tuning of the lift cylinder's movement.

In summary, lift cylinders are designed to handle variations in fluid pressure and flow rate to ensure smooth and controlled lifting operations. With the use of control valves, robust cylinder design, and fluid control systems, lift cylinders can adapt to changes in fluid pressure and flow rate, providing reliable and efficient performance.

lift cylinder

Can lift cylinders be used in manufacturing and production machinery?

Yes, lift cylinders are commonly used in manufacturing and production machinery. Lift cylinders, also known as hydraulic cylinders, are devices that generate linear force and motion through the use of pressurized hydraulic fluid. They are widely employed in various industrial applications for lifting, pushing, pulling, and holding heavy loads.

In manufacturing and production machinery, lift cylinders play a crucial role in providing controlled movement and force for a wide range of tasks. Here are some examples of how lift cylinders are used:

  1. Material Handling: Lift cylinders are utilized in machinery such as forklifts, cranes, and material handling equipment to lift and transport heavy objects. They allow for precise positioning and movement of loads, improving efficiency and safety in material handling operations.
  2. Assembly and Automation: Lift cylinders are integrated into assembly lines and automated machinery to perform tasks like part insertion, pressing, and clamping. They provide the necessary force and motion required for assembling components or joining parts together.
  3. Presses and Punching Machines: Lift cylinders are employed in presses and punching machines to exert force for bending, forming, and shaping materials. These cylinders ensure accurate and consistent results in metalworking processes.
  4. Industrial Robots: Lift cylinders are used in robotic systems to enable lifting and manipulation of objects. They facilitate the controlled movement of robot arms and end-effectors, allowing robots to perform tasks such as pick-and-place operations, welding, and painting.

Lift cylinders offer several advantages in manufacturing and production machinery. They provide high force capabilities, precise control over movement, compact design, and the ability to operate in various orientations. Furthermore, their hydraulic nature allows for smooth and gradual acceleration and deceleration, reducing the risk of damage to the machinery or the materials being handled.

In conclusion, lift cylinders are extensively utilized in manufacturing and production machinery across different industries. Their versatility, reliability, and ability to generate controlled linear force make them essential components in a wide range of industrial applications.

lift cylinder

How does a lift cylinder contribute to precise load positioning?

A lift cylinder plays a crucial role in achieving precise load positioning in various applications. Here's an explanation of how a lift cylinder contributes to precise load positioning:

1. Controlled Vertical Motion:

A lift cylinder provides controlled vertical motion, allowing for accurate and precise movement of the load. By adjusting the hydraulic fluid flow and pressure, the cylinder extends or retracts with the desired speed and smoothness. This controlled motion enables precise positioning of the load at the desired height or location.

2. Adjustable Stroke Length:

Lift cylinders often have an adjustable stroke length, which refers to the distance the piston can travel within the cylinder barrel. By customizing the stroke length according to the specific load positioning requirements, the cylinder can achieve the desired precision. This adjustability allows for fine-tuning the cylinder's movement to accurately position the load with precision.

3. Load Holding Capability:

Lift cylinders are designed to have load holding capability, meaning they can maintain the position of the load without drifting or unwanted movement. This is achieved through the use of seals, locking mechanisms, or pressure control valves that prevent the cylinder from extending or retracting unintentionally. The load holding capability ensures that once the load is positioned precisely, it remains stable and secure.

4. Sensing and Feedback Systems:

Advanced lift cylinder systems may incorporate sensing and feedback mechanisms to enhance load positioning precision. These systems use sensors to measure the position, force, or pressure within the cylinder and provide feedback to the control system. This real-time feedback allows for continuous adjustments and fine-tuning of the cylinder's movements, ensuring precise load positioning.

5. Integration with Control Systems:

Lift cylinders can be integrated with control systems that enable precise load positioning. Through electronic controls or programmable logic controllers (PLCs), the cylinder's movement can be precisely controlled and coordinated with other equipment or processes. This integration allows for synchronized movements and accurate load positioning in complex automation systems.

In summary, a lift cylinder contributes to precise load positioning through controlled vertical motion, adjustable stroke length, load holding capability, sensing and feedback systems, and integration with control systems. These features and capabilities enable lift cylinders to achieve the precise positioning required in various applications, ranging from material handling to industrial automation.

China Hot selling Engineering Boom 3 Stage Tie Rod Jack Telescopic Scissor Lift Hydraulic Cylinders Cylinder   vacuum pump design		China Hot selling Engineering Boom 3 Stage Tie Rod Jack Telescopic Scissor Lift Hydraulic Cylinders Cylinder   vacuum pump design
editor by CX 2024-02-04