Product Description

Name Standard Gas Spring
Use Automobile, Toolbox, Car, Furniture, Machines, Mechanical Equipment, Boat, Container etc.
Quality Standards 1.180,000 times -passed fatigue test
2.ROHS certificated by SGS
3.Passed ISO9001 Quality System Certification
Material Steel
Stainless Steel 304
Stainless Steel 316
endfittings ball connector/metal eye/clevis and so on
Advantages 1. Pass 180,000 Times Fatigue Times
2.Up to 36hours salt spray test
3. 3-5 years product warranty
4. Fast Delivery Time: 1000 pcs 3 Days
5. Free  Sample avaiable
Trade Term FOB ZheJiang or C&F price if you need

Gas Spring Parameter      
Piston Dia Tube Dia Stroke(max) F1
mm mm mm N
6 15 150 50-400
8 18 250 50-600
10 22 400 100-1150
12 25 450 100-1600
14 28 500 500-2100

FAQ
Cathy: Are you factory?
JR: Yes,We are a manufacturer factory. We have plant area There Thousand square meters, and we are keeping extending our plant.We have about 10-20employees in different departments.

Customer: What is your price terms?
JR:Normally FOB(free on board) , CIF(cost insurance and freight)

Customer: What is your payment terms?
JR :Generally T/T 30% deposit, the balance should be paid by T/T before shipment .

Customer: How can I visit your factory or office?
JR:Welcome you visit our factory or office for business negotiation. Please try to contact our staff first by email or telephone. We will make the soonest appointment and arrangement the pick up.

Customer: Can you produce the goods as customer design?
JR :Welcome you send us the design or sample, we will calculated the cost and unit price to you in soonest.

Customer: May I get your sample for free?
JR :Sure, you will get our free sample. But the freight should be paid under your freight collected account in the first cooperation.

Customer: How about the products packing?
JR:Packing as the different products and different sizes, we have professional export design packing for our customer, and we could as customer required.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Function: Pressed
Material: Paint Steel/ Stainless Steel
Usage: Industrial, Auto, Furniture, Home Appliance
Load Type: Compression
Shape: Slender
Length: Can Be Customed
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

lift cylinder

How does a lift cylinder contribute to energy-efficient lifting?

A lift cylinder plays a significant role in promoting energy-efficient lifting operations. Here's an explanation of how lift cylinders contribute to energy efficiency:

1. Hydraulic System Efficiency:

Lift cylinders are commonly used in hydraulic systems, which are known for their high efficiency. Hydraulic systems utilize pressurized fluid to transmit power, allowing for smooth and controlled lifting operations. The hydraulic fluid is circulated within the system, and the lift cylinder converts the pressure of the fluid into mechanical force to lift the load. Compared to other mechanical lifting mechanisms, hydraulic systems, including lift cylinders, experience minimal energy loss due to their efficient power transmission.

2. Power-to-Weight Ratio:

Lift cylinders are designed to have a high power-to-weight ratio. This means that they can generate a substantial lifting force relative to their weight. By utilizing lightweight yet durable materials and optimizing the design, lift cylinders can effectively lift heavy loads while minimizing the amount of energy required. The efficient power-to-weight ratio contributes to energy efficiency by reducing the overall power consumption during lifting operations.

3. Load-Specific Design:

Lift cylinders are often engineered to match the specific load requirements of lifting applications. By customizing the design parameters, such as bore size, stroke length, and operating pressure, lift cylinders can be optimized for the intended load capacities and lifting tasks. This load-specific design ensures that the lift cylinder operates at its optimal efficiency, minimizing energy waste and maximizing the lifting performance.

4. Regenerative Systems:

In certain lifting applications, lift cylinders can be integrated into regenerative systems. Regenerative systems capture and store energy that would otherwise be dissipated as heat during the lowering phase of the lifting operation. This stored energy can then be reused to assist in the subsequent lifting process, reducing the overall energy consumption. Regenerative systems enhance energy efficiency by utilizing the otherwise wasted energy to partially power the lifting operation.

5. Control Systems:

Advanced control systems can be implemented in conjunction with lift cylinders to optimize energy efficiency. These control systems, such as proportional valves or variable-speed drives, allow for precise control of the lifting process. By adjusting the flow rate or speed of the hydraulic fluid, operators can match the power output of the lift cylinder to the specific load requirements, minimizing energy waste and improving overall efficiency.

6. Maintenance and Optimization:

Regular maintenance and optimization of lift cylinders are essential for maintaining energy efficiency. Proper lubrication, seal replacements, and overall system inspections help ensure that the lift cylinder operates at its peak performance. By identifying and addressing any issues or inefficiencies, maintenance practices contribute to energy-efficient lifting operations.

In summary, lift cylinders contribute to energy-efficient lifting through hydraulic system efficiency, a high power-to-weight ratio, load-specific design, regenerative systems, control systems, and proper maintenance. By utilizing these features and practices, lift cylinders help minimize energy consumption and enhance overall lifting efficiency.

lift cylinder

How does a lift cylinder handle variations in hydraulic seal technology?

A lift cylinder is designed to accommodate variations in hydraulic seal technology. Here's an explanation of how lift cylinders handle these variations:

1. Seal Types:

Hydraulic seal technology offers various types of seals, including O-rings, lip seals, V-rings, and wipers. Lift cylinders are designed to incorporate different seal types based on the specific requirements of the application. The selection of seal types depends on factors such as pressure, temperature, fluid compatibility, and environmental conditions. Lift cylinders are manufactured with the necessary seal grooves and configurations to accommodate these variations in seal types.

2. Seal Materials:

Hydraulic seals are manufactured using different materials, such as rubber, polyurethane, PTFE (polytetrafluoroethylene), and various composite materials. Each material offers specific properties, including resistance to wear, temperature, chemicals, and extrusion. Lift cylinders are engineered to work with different seal materials, ensuring compatibility and optimal performance. The cylinder design takes into account the specific characteristics and requirements of the seal materials used.

3. Seal Profiles and Dimensions:

Hydraulic seals come in various profiles and dimensions to suit different applications and equipment. Lift cylinders are designed with corresponding seal grooves and dimensions to accommodate the specific seal profiles. The seal profiles may include standard shapes such as U-cups, piston seals, rod seals, and specialized profiles for specific sealing requirements. Lift cylinders are manufactured with precise tolerances to ensure proper installation and sealing effectiveness.

4. Sealing Performance and Efficiency:

Lift cylinders are engineered to provide optimal sealing performance and efficiency. They are designed to minimize leakage and maintain the required hydraulic pressure during operation. The cylinder components, including the piston, rod, and cylinder housing, are precisely machined to ensure a tight fit and prevent bypass of hydraulic fluid. Lift cylinders undergo rigorous testing and quality control measures to verify their sealing performance and efficiency under various operating conditions.

5. Seal Maintenance and Replacement:

Lift cylinders are designed to facilitate seal maintenance and replacement. Over time, hydraulic seals may wear out or degrade due to factors such as usage, environmental conditions, or fluid contamination. Lift cylinders are constructed to allow for easy access to the seals, making maintenance and replacement procedures efficient. This design consideration reduces downtime and ensures the longevity of the lift cylinder's sealing system.

In summary, lift cylinders are engineered to handle variations in hydraulic seal technology by accommodating different seal types, materials, profiles, and dimensions. Their design ensures optimal sealing performance, efficiency, and ease of maintenance. By incorporating the appropriate seal technology, lift cylinders maintain the integrity of the hydraulic system, prevent leaks, and ensure reliable and efficient operation.

lift cylinder

How does a lift cylinder handle variations in lift height?

A lift cylinder is designed to handle variations in lift height by utilizing its extendable and retractable piston rod. Here's an explanation of how a lift cylinder handles variations in lift height:

When a lift cylinder is activated, hydraulic fluid is directed into the cylinder chamber, creating pressure that extends the piston rod. As the piston rod extends, it pushes against the load, lifting it to the desired height.

When there are variations in lift height, the lift cylinder adjusts accordingly by controlling the extension and retraction of the piston rod. Here's how it works:

1. Extending the Piston Rod:

When the lift height needs to increase, the lift cylinder extends the piston rod further. This extension is achieved by increasing the flow of hydraulic fluid into the cylinder chamber. The increased fluid pressure pushes the piston and rod assembly, extending the rod and lifting the load to the required height.

2. Retracting the Piston Rod:

Conversely, when the lift height needs to decrease, the lift cylinder retracts the piston rod. This retraction is achieved by reducing the flow of hydraulic fluid into the cylinder chamber. The decreased fluid pressure allows the piston and rod assembly to retract, lowering the load to the desired height.

3. Precise Control and Positioning:

Lift cylinders are equipped with valves and control mechanisms that allow for precise control and positioning of the piston rod. By regulating the flow of hydraulic fluid and adjusting the pressure, the lift cylinder can achieve accurate and controlled movements, enabling it to handle variations in lift height with precision.

4. Adjustable Stroke Length:

Some lift cylinders have an adjustable stroke length, which refers to the distance the piston rod can travel within the cylinder barrel. By customizing the stroke length, the lift cylinder can accommodate different variations in lift height. The stroke length can be modified by adjusting the cylinder's dimensions or incorporating additional components.

5. Integration with Control Systems:

Advanced lift cylinder systems can be integrated with control systems, such as electronic controls or programmable logic controllers (PLCs), to automate and optimize lift height adjustments. These control systems can monitor and adjust the lift cylinder's movements based on predetermined parameters or feedback from sensors, ensuring precise and consistent lift height control.

In summary, a lift cylinder handles variations in lift height by extending or retracting the piston rod, controlling the flow and pressure of hydraulic fluid, achieving precise control and positioning, utilizing adjustable stroke length, and integrating with control systems. These capabilities enable the lift cylinder to adapt to different lift height requirements and provide accurate and controlled lifting operations.

China Good quality Gas Lift Pneumatic Cylinder for Cabinet   vacuum pump adapter	China Good quality Gas Lift Pneumatic Cylinder for Cabinet   vacuum pump adapter
editor by CX 2024-02-06